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Abstract:  20 

Many important neurocognitive states, such as ones related to performing natural activities and 

fluctuations of arousal, shift over minutes-to-days in the real-world. We analyzed 3-12 days of 

continuous intracranial recordings in twenty participants that freely socialized, used digital 

devices, slept, etc. to understand how neural dynamics form and change with behavior. Brain 

networks formed stable states that were predictive of both behavior and physiology. Behavior 25 

changes were associated with bursts of rapid neural fluctuations where brain networks 

chaotically explored many configurations before settling into new states. These trajectories 

traversed an hourglass-like structure, with awake and sleep at opposite ends, and an attractor 

state represented by default mode network activation in between. These findings illustrate ways 

our brains balance stability and flexibility to produce real-world behavior. 30 

 

One-Sentence Summary: During a week of intracranial recordings, the brain forms a 

punctuated equilibrium of stable states and chaotic transitions.  
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Main Text:  

Whether we are fatigued from attending a teleconference call or eager to read a book, 

whether we feel vibrant and ready to start our day or weary and winding down to sleep, many 

neurocognitive processes in our lives slowly fluctuate over minutes to hours. Yet, most of our 

understanding of human brain activity comes either from well-controlled experiments, studying 5 

reactions to carefully chosen stimuli over milliseconds to seconds, or examining spontaneous 

neural activity from subjects “resting” inside a neuroimaging machine. A few studies have 

analyzed brain state dynamics over minutes in a single sitting or repeatedly sampled a few 

minutes per day spread out over days to months using functional neuroimaging (1–8). A small 

number of studies took similar snapshot approaches in real-world settings, such as tracking 10 

depression phenotypes (9, 10) or classifying small windows of a few specific behaviors (11, 12).  

As a result, it is still unclear how our brain activity continuously changes over timescales 

of minutes-to-hours-to-days, particularly during natural behaviors that depart from the 

boundaries of conventional experimental paradigms. Here we asked several questions regarding 

long timescale brain dynamics: What neural states emerge during natural behavior when 15 

recorded continuously over a week using intracranial monitoring? How does the brain transition 

between these states? Do these states and transitions follow a consistent organization with 

respect to behavior, physiology, and anatomy across people? 

We used intracranial neural recordings (80-126 electrodes implanted per participant) in 

twenty neurosurgical participants undergoing evaluation for epilepsy surgery for between 75 to 20 

283 hours (near-continuous recordings across approximately 3-12 days). During this time, 

participants were confined to the hospital but would freely socialize with friends, family, and 

staff, interact with digital devices, sleep, watch TV, and perform other volitional natural 

behaviors while under simultaneous neural and video monitoring. We started by examining the 

basic dynamics of different areas of the brain, finding that they would change in consistent 25 

manners, albeit oftentimes in a complex and nonlinear fashion. To probe this nonlinearity, we 

used self-supervised deep recurrent neural networks and Koopman operators to learn a “state-

space” of the brain’s dynamics – a geometric representation of the brain’s activity where 
changing patterns of brain network activations are reflected as movement in this state-space. This 

state-space allows us to query brain networks’ overall organization, relationships to behavior, 30 

and primary dynamical driving forces.  

Functional parcels showed consistent fluctuations over days and their dynamics displayed 

consistent anatomic trends. 

After removing an hour before and after ictal (seizure) events as determined by the 

clinical team, we calculated the coherence between all pairs of electrodes in each participant 35 

every five seconds over five frequencies: theta (θ: 4-8Hz), alpha (α: 8-12Hz), low beta (βl: 14-

20Hz), high beta (βu: 20-30Hz), and gamma (γ: 30-70Hz) (13). Electrodes were parcellated into 

tightly connected, anatomically compact groups of electrodes, each a “parcel” of the brain 

(Figure 1A). After removing parcels and activity associated to the participants’ seizure onset 
zones, we plotted the coherence of each parcel over the week (Figure 1B-top). Fluctuations of 40 

these coherences showed characteristic temporal scales that were repeated over different hours 

and days of data. We quantified this stability by how slowly each parcel’s autocorrelation 

decayed (timescale). Timescale differences between parcels were stable over time, indicating 

that parcels that fluctuated faster or slower would remain so throughout the week 

(Supplementary Figure S3). 45 
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Differences between parcels were quantified over all twenty participants by grouping 

parcels according to which of six canonical fMRI networks they fell in (“default mode”, “dorsal 
attention”, “salience”, “somatomotor”, “control”, and “visual” as defined in (14)). Parcels in the 

default mode consistently showed higher autocorrelation magnitude and longer decay timescales 

across our participants, whereas parcels of the salience network showed shorter timescales 5 

(Figure 1B-bottom). These findings demonstrate a temporal hierarchy separating “fast” and 
“slow” regions of the brain. A temporal hierarchy, typically measured using autocorrelation, has 

been hypothesized in the brain with transmodal systems, such as the default mode network, 

slowly integrating data from faster unimodal regions over seconds to minutes depending on the 

task (1, 2, 15, 16). Our results extend these findings to minutes-to-hours in a real-world setting 10 

during natural behavior. 

Neural dynamics predicted physiology. 

To assess the neurophysiological relevance of the above dynamics, we linked them to 

fluctuations in circadian rhythms and arousal. After grouping parcels into networks to reduce 

dimensionality in a data-driven fashion, we took the first half of the week for each participant 15 

and used canonical correlation analysis (CCA) (17) to identify networks that maximized 

correlation to time of day. We tested this group of networks on the second half of the week using 

permutation testing and found that 11 of the 20 participants had networks significantly linked 

with circadian rhythm (Figure 2A). Notably, six of the nine participants whose data lacked 

significant correlation to time of day had sleep disturbances such as nocturnal-awakening 20 

seizures or intentional clinical sleep deprivation, suggesting these participants had disrupted 

circadian rhythms.  

Seven participants had sufficiently clean electrocardiogram (EKG) signals to track heart 

rate. Heart rate is strongly correlated with the degree of arousal (18) and is used here as a proxy 

for it. We used L1-regularized (19) regression over the first half of the week to identify a group 25 

of networks that predicted heart rate and tested this group on the remaining half (Figure 2B). Six 

of the seven participants had networks that were significantly associated with heart rate.  

Brain networks underwent bursts of rapid transitions that coincided with natural behavior 

shifts. 

We next assessed overall brain network dynamics and the relationship between these 30 

dynamics and natural behavior. The top of Figure 3A shows the brain network activation patterns 

from one participant for the full week and the mid/bottom of Figure 3A shows the “speed” of one 
participant’s brain throughout the week: how quickly the brain changed its network pattern 

between consecutive time windows. Times of high speed occurred in “bursts” where the brain 

rapidly modulated its networks before stabilizing into a new configuration (examples in Figure 35 

3C; Figure S7 quantifies the “burstiness” of the dynamics across all participants). These results 

illustrate that brain network dynamics follow a punctuated equilibrium of relatively stable 

“equilibrium” periods of slowly changing brain networks that are “punctuated” by transitory 

bursts of rapidly changing brain networks. 

To assess how these neural transitions related to behavioral transitions, in nine 40 

participants with high-quality video recordings, we marked periods of time when participants 

underwent three broad categories of behavior: interacting with a digital screen, socializing with 

another person, or physically manipulating an object. We marked times when participants began 

or ended one of these three behaviors and found that neural and behavioral transitions tended to 
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coincide with one another (Figure 3B; detailed examination of the relationship between the 

behavioral and neural states themselves is performed in a later section below).  

Brain networks transitions were circuitous, unpredictable, and chaotic. 

How does the brain transition between the starting and ending states of these bursts? Do 

these bursts take consistent paths? To answer these questions, we defined a neural state-space: a 5 

representation of the brain in a high-dimensional Euclidean space where the axes represent the 

activation of different brain networks. A single time window forms a point in this space where 

the point’s position along each axis marks the coherence of each brain network during that time 

window. A transitory burst (a series of consecutive time windows where brain networks start in 

one configuration and ends in another) becomes a trajectory in this state-space: a series of points 10 

leading from a starting state to an ending state.  

We found that these bursts were circuitous by measuring the total distance traversed by a 

trajectory (the trajectory’s length) and comparing it to the trajectory’s displacement (the straight-
line distance between the starting and ending point). The distance was on average 8.9 times 

longer than the displacement across participants during transitions and the ratio for transitions is 15 

greater than during stable states (8.9 versus 6.0; Supplemental Figure S13). Examples of these 

circuitous trajectories from one participant are found in Figure 3C. 

After grouping bursts that shared highly similar starting states, we calculated the distance 

between their trajectories as a function of what percentage of the trajectory was complete. If 

neural bursts went from their starting to ending points in a consistent manner, bursts sharing the 20 

same starting and ending points would take highly similar paths. Instead, nearly the first half of 

these paths displayed almost as much variability between bursts sharing a destination as between 

bursts with different destinations despite sharing their starting location (Figure 3D). Only when 

about 75% of the trajectory was complete did the variability between bursts sharing both a 

starting and ending point diverge from the variability of bursts sharing only a starting point by a 25 

Cohen’s d effect size of one. Using 0-1 chaos tests, we found that chaoticity within the brain’s 
dynamics rose during times of these transitory bursts (Figure 3E), indicating that these transitory 

bursts were both non-repeated and chaotic-like. Additionally, the size of these transitions and the 

time between them followed power laws that are oftentimes associated with chaotic and critical 

systems (Figure 3F) (20).  30 

During natural behavior, instead of taking a direct, consistent route between neural states, 

the brain undergoes a chaotic, exploratory-like phase where the variance of its trajectories 

dramatically rises before stabilizing onto a destination. Upon reaching these destinations, the 

brain would enter stable states of decreased variability and chaoticity, presumably exploiting 

currently active networks to accomplish some goal until the participant’s behavior changed once 35 

again. These transitions may reflect real-world correlates of task switching typically studied in 

lab experiments (21, 22) thought to relate to “cognitive flexibility.” These dynamics extend early 

studies of chaos in the brain and ongoing theoretical models (23–25) based on task data in 

controlled settings. 

Neural dynamics are driven by a central homeostatic-like attractor at the default mode. 40 

While the brain’s movement appears chaotic, is there a consistent anatomical trend and 

organization? Do dynamics organize consistently with respect to behavior? System dynamics, in 

and out of biology, are traditionally defined around their critical points: points in the system that 

draw in or push out the system’s dynamics (26). If we describe how a ball rolls throughout hills 
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and valleys, we describe how it rolls away from the top of hills and towards the bottom of 

valleys. In metabolic physiology, we describe sodium or glucose levels by how they fluctuate 

relative to the homeostatic equilibrium points they stabilize to.  

 In order to capture the brain’s complex and chaotic dynamics in a simple dynamical 

form, we used self-supervised deep recurrent neural networks and Koopman operators (27). We 5 

started by taking all the data from the week except for two days and learning the underlying 

building blocks of these dynamics. Neurocognitive states form out of combinations of these 

individual building blocks and their dynamics unfold according to their interactions and trends, 

like how words form out of combinations of letters and a sentence’s meaning unfolds from the 

grammatical interactions of its words and phrases. More specifically, we took the original state-10 

space and mapped each point in it onto a new nonlinear manifold where each axis of that 

manifold represents a single building block and the brain’s overall neurocognitive state becomes 
a sum of these blocks. We defined this nonlinear axis transformation such that the temporal 

evolution of these blocks can be captured using easily interpretable linear methods, allowing us 

to identify its underlying dynamical drivers.  15 

To validate our model, we took the two days that were not used to learn our neural 

networks and Koopman operators and annotated the participant’s behavior during these days into 

the three major categories used in Figure 3B: watching a digital device, socializing, and 

physically manipulating an object. We trained linear behavioral prediction classifiers on the 

brain’s position along the learned manifold on one day and tested them on the other day. If 20 

learning these building blocks increases classification accuracy, then the building blocks and 

states learned by the algorithm are neurocognitively relevant. 

 Learning this manifold increased our capability to predict all three natural behaviors 

(Figure 4B-left, p=0.012). This indicates that a) the manifold contained neurocognitively relevant 

information that could be decoded by interpretable linear operators and b) natural behavior 25 

organized consistently within this manifold. To assess parts of this organization, we asked what 

brain networks were associated with areas of the manifold tied to each behavior. Social 

interactions activated dorsal attention and somatomotor networks. Physically manipulating an 

object activated the dorsal attention, somatomotor, and salience networks (Figure 4B-right). 

Watching a digital device did not consistently activate any of the brain networks we examined 30 

across participants. 

 We next asked whether there was a consistent dynamical organization for how the brain 

moved around on this manifold. Using eigendecomposition on the Koopman operator, we found 

that the brain’s dynamics trended towards a central attractor in every participant. This attractor is 

visualized in Figure 4C where we plot the flow diagram of the brain’s dynamics: how the brain’s 35 

state tends to change as a function of which networks are active/inactive, and their overall 

tendency is to drift towards a central state. This is quantified by the eigenvalues of the Koopman 

operator in Supplementary Figure S11, which show that in all twenty participants the brain 

tended to move towards this attractor. At this attractor state, the brain consistently activated the 

default mode network while trending towards deactivating the visual network across our 40 

participants (Figure 4D). Together, these results demonstrate that neural states organized 

consistently across participants with respect to both outwardly observable behavior and inwardly 

observable dynamical trends. 

Neurocognitive states form an hourglass-like shape where the default mode attractor 

separates waking and sleep. 45 
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If there is a consistent behavioral and dynamical organization of the brain’s nonlinear 
dynamics, what does this organization look like? How is the representation of different 

neurocognitive states geometrically organized in this space? In Figure 5A-left, for two 

participants, we plot a full day of the brain’s trajectory in the Koopman space colored by what 

behavioral state the participant was in, along with the attractor state. Continuing the analogy 5 

from the prior section, this plot is an illustration of how the building blocks of human brain 

network activity are combined to form the words and sentences of the brain’s language that 

underpin neurocognitive states participants went through over a day of natural behavior. 

Qualitatively, these day-long trajectories formed “hourglasses” where different waking behaviors 

formed separate quadrants in the top of the hourglass, sleep formed the bottom of the hourglass, 10 

and periods where the participant is awake but not doing any of the three annotated behaviors 

formed the middle funnel around the attractor state. We denote this middle funnel associated 

state as “wakeful rest,” because during these times, participants were awake but not outwardly 

interacting with their environment. 

We verified this structure quantitatively across participants and found that the brain’s 15 

state departs further away from the central attractor during times of active behavior than times of 

wakeful rest (Figure 5A). We defined an axis between the center of brain states associated with 

sleeping and those associated with being outwardly active and projected the brain’s state onto 
this “sleep-wake” axis (Figure 5B). Figure 5B-right shows the distribution across participants of 

the center of various neurocognitive states along this axis, including stages of sleep as 20 

determined by an automated sleep score classifier (28). Neurocognitive states were consistently 

organized with the central attractor and wakeful rest separating actively waking behavior on one 

end and sleep stages N1, N2, N3, and REM on the other end. The organization of sleep stages in 

terms of distance from the central attractor matches the conventionally understood “depth” of 
sleep stages with deeper stages falling further away from the attractor (29). Stages of sleep 25 

broadly showed deactivation of anatomical networks across participants: REM sleep was 

associated with deactivation of the dorsal attention and salience network, while N3 and REM 

stages displayed several network deactivations that trended towards statistical significance 

(Figure S12).  

Taken together, these results indicate that the default mode network serves an important 30 

role as an anchor in the brain’s dynamics. Analogous to how heart rate increases during exercise 

but will on average have it trend back to resting heart rate via homeostatic forces, the brain’s 
dynamics trend towards activation of the default mode network. This attractor along with 

neurocognitive states associated with wakeful rest and N1 sleep formed a central bridge between 

actively awake behavior and deeper stages of sleep. 35 

Additionally, these findings suggest that long-standing results regarding the default mode 

network’s role in resting-state fMRI not only generalizes to wakeful rest during natural behavior, 

but also forms a critical stabilizing anchor in neural dynamics (30).  

Discussion 

 In this study, we investigated the expression, organization, and temporal dynamics of 40 

various neurocognitive states during natural human behavior. By projecting the data into a non-

linear space where locations on this manifold represented the pattern of brain network 

activations, we found that neurocognitive states formed an hourglass-like structure. Behavioral 

states clustered in predictable locations along this structure, which allowed us to use network 

activation patterns to predict specific behaviors, such as whether they were talking to a friend or 45 
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watching a device. Awake outward behavior formed one end of the hourglass and sleep formed 

the other end. Times when participants were either awake but not outwardly active or in shallow 

sleep formed the central funnel.  

 The brain primarily switched its location along this structure by undergoing sharp bursts 

of dynamism where it would chaotically explore many areas before settling into a destination. 5 

These bursts tended to occur when someone’s behavior was changing, such as when they went 

from looking at their smartphone to talking to their friends. The dynamics of brain network 

transitions suggest that when we switch our behavior in the real world, our brains do not undergo 

a stable, directed shift in neural activity but rather undergo an exploratory-like phase before 

stabilizing. Despite this chaos, the overall dynamics of the brain tended to be drawn towards a 10 

central homeostatic-like attractor located near the central funnel, wherein the brain tended to 

activate the default mode network and suppress sensory related ones.  

 Interspersed chaotic-like shifts are seen in other natural and computational systems, such 

as punctuated equilibrium in evolutionary biology or 1/f avalanches in cellular automata (31, 32). 

While these systems follow logical rulesets, they periodically generate complex and chaotic 15 

system-wide transformations such as phylogenetic explosions. Similarly, bursty transitions 

between stable states, known as “punctuated equilibrium,” has been proposed as a hallmark of 

relatively efficient group decision-making (33). The “critical brain hypothesis” argues that 

emergent complexity in the brain, as in other large, multi-component systems, can occur by 

amplifying fluctuations on critical boundaries that follow characteristic power law dynamics 20 

with bursty characteristics, as we observed here (20, 34, 35). One common theme among these 

fields is the explore-exploit tradeoff: the concept that many systems incentivized to adapt to 

changing environments will alternate between exploration-heavy strategies that search for new 

solutions and exploitation-focused stratagems that fine-tune a single one (36). Our results 

indicate these frameworks may extend to continuous neural dynamics over longer timescales of 25 

hours to days during natural behavior. 

 Studying brain dynamics at this scale can enable the analysis of cognitive and 

physiological processes inaccessible on shorter timescales. Our attention, mood, and arousal 

fluctuate on the order of hours-to-days. Physiological changes such as hormones and gene 

expression do the same (37). Clinically, many neuropathological states evolve and fluctuate over 30 

this timescale. While these fluctuations can be difficult to assess using traditional experimental 

paradigms, there are ~600 thousand seconds of data in a single week of continuous recordings: 

600 thousand examples of the brain’s state in different behaviors, environments, and 
physiological conditions. Self-supervised deep neural networks, such as the one we used here, 

offer a rapidly developing method to detect patterns in sparsely labeled data, allowing us to link 35 

those patterns more accurately to behavior, physiology, and possibly pathological states. The 

Koopman operators we used here have seen increasing usage in control theory for their 

capability to identify underlying drivers of nonlinear system dynamics (38), a critical part of 

leveraging a system’s natural dynamics during closed-loop control or modulation (9, 10, 39). To 

help facilitate the use of these methods for other applications, our analysis code can be found at 40 

https://github.com/MNobodyWang/WeekLongBrain. 

Continuous human brain recordings over a week illustrate that brain networks transition 

between states via unpredictable and chaotic-like trajectories. These trajectories appear to 

explore many possible brain states before stabilizing into local states that predictably correspond 

to behavior, and activation of the “default mode network” during wakeful rest serves as a central 45 

attractor for the system. Taken together, these results suggest that the functional flexibility and 

https://github.com/MNobodyWang/WeekLongBrain
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adaptiveness of our brains are an emergent property (40) of alternations between stable 

exploitation of specialized local brain states and wide exploration of the brain’s possible 

configurations during state transitions, showcasing the utility of analyzing continuous neural 

recordings over long time periods during real-world behavior. 
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Fig. 1. Parcels of the brain followed stable rhythms conserved throughout the week that 15 

followed an anatomical hierarchy. A) 3-12 days of continuous recordings from twenty 

participants were split into five-second-long windows, removing windows around seizure 

activity and artifact removal. We calculated the coherence between all pairs of electrodes and 

grouped electrodes with high coherence into anatomically compact parcels. B.1) Coherence 

within two parcels from a representative participant. B.2) Parcels display unique, stable 20 

timecales reflected by their autocorrelation stability over different days of data (all participants 

shown in Supplementary Figure S3). B.3) Timescale of rhythms between parcels belonging to 

https://github.com/MNobodyWang/WeekLongBrain
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one fMRI resting network versus another. Cell values indicate the difference in autocorrelation 

parameter across participants (y axis versus x axis) with positive cells indicating the network 

indicated by its row has a larger parameter than the one indicated by its column. Non-zero cells 

indicate statistically significant differences post multiple comparisons by mixed effects model. 

Methods described in Supplementary Section M6.  5 

 
Fig. 2. Brain networks predicted physiological markers. A) We linked networks (groups of 

parcels found using principal components analysis) to circadian rhythm by training canonical 

correlation analysis on one half of the week and then testing on the other. The network mixture 

activations during testing are shown on the left plotted against time with the black line indicating 10 

a theoretical circadian rhythm. Skips in data are removals due to seizures or disconnected 

hardware. The identified mixture’s anatomical and frequency coverage are shown projected onto 
the canonical fMRI networks. B) Networks were linked to heart rate by training linear regressors 

on one half of the week and testing on the remaining half. Test predictions are plotted against 

heart rate along with their anatomical and frequency coverage. All participants for these analyses 15 

are shown in Supplementary Figures S5 and S6. Methods described in Supplementary Section 

M9. 
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Fig. 3. Neural dynamics undergo chaotic-like transitions when natural behavior shifts. (A-

top) Network activations plotted over the week for one participant where each color represents 

the activity of a different network (sum of activity normalized to one for visualization purposes). 

(A-mid/bottom) How quickly the brain changed network activations every five seconds. The 5 

brain reorganized itself using “transition bursts” of high speed (Supplementary Figure S7 

quantitatively demonstrates that transitions are “bursty” across all participants). (B) Average 

time across participants between neural and behavioral transitions compared to the expected time 

if no relation between the two. Neural and behavioral transitions tended to occur with each other 

(p=1e-4, paired t-test). (C) Two transitions visualized on a t-distributed stochastic neighbor 10 

embedding of the brain’s weeklong course, showing that transitions did not move directly 

between states but rather explored many interim states (quantified in Supplementary Figure S13 

over participants). (D) We took transition bursts with the same starting and ending states and 

asked how similar they were as transitions progressed from start to end (1, blue). We compared 

this to transitions with the same starting but different ending ones (2, red). The Cohen’s d effect 15 

size on the difference between these two distances is shown on right. The first half of the 

transitions indicated little about the eventual destination, indicating that transitions in the brain 
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did not take consistent paths from start to end. (E) 0-1 chaos test shows that the chaoticity of 

brain dynamics rises during transitions across participants (p=1e-3, paired t-test). (F) Distribution 

of transition size and the time between them for all participants in log-log form. Both 

distributions formed power laws (linear on log-log axes) across participants by Kolmogorov-

Smirnov and likelihood tests. Details in Supplementary Section M10. 5 

 

 
Fig. 4. Neural dynamics are driven by a central homeostatic-like attractor at the default 

mode. (A) We learned a Koopman representation of the brain’s dynamical state by using a 
recurrent neural network to project the original network activations into a higher-dimensional 10 

“Koopman space” where the trajectories of the brain in this space could be captured by linear 
operators. (B) Trajectories in Koopman space more accurately predicted natural behavior than 

the original network activations (p=0.012 by paired t-test). Error bars on the left indicate 95% 

confidence intervals across participants. Anatomical regions consistently activated during each 

behavior across participants are shown on the right. (C) Flow diagram of how the brain’s state 15 

tends to change over time, showing their overall tendency to drift towards a central attractor state 

which is quantified over all participants in Supplementary Figure S11. (D) At this central 

attractor state, the brain consistently activates the default mode network at low frequencies 

across participants (p<0.05 post multiple comparisons correction). The dagger marks a t-statistic 

that is significant independently (p=0.02) but not significant post multiple comparisons 20 

correction. Methods described in Supplementary Section M11-13. 
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Fig. 5. Wakeful rest orbits the central attractor while active behavior departs it. (A-left) 

This plot shows what brain networks are doing over the course of a day in two participants. 

Specifically, we plotted a full day of brain network trajectories in the Koopman space, 

highlighting both the central attractor state along with how different wake states and sleep are 5 

positioned relative to this attractor. (A-right) We found that times where the participants were 

doing one of the three active behaviors tended to depart further away from the central dynamical 

attractor state relative to times when the patient was awake but not doing any of the three 

behaviors (p=0.03 by paired t-test). (B-left) We projected neural states from one participant onto 

the axis separating the centroid of their sleeping and waking states, which we denote the sleep-10 

wake axis. This is equivalent to projecting the hourglasses shown in Figure 5A-left onto a 

vertical line nearly parallel to the z-axis that runs between the center of asleep and waking states. 

(B-right) We calculated the centroid of each participant’s neurocognitive states and projected 

them along their sleep-wake axis. The center of sleeping states was normalized to zero, and the 

center of actively awake states was normalized to one. We then plotted the centroids’ distribution 15 

across participants (error bars indicate 95% confidence intervals). Overhead asterisked bars 

indicate that the state indicated by the color was significantly different from the marked states by 

multiple comparisons corrected paired t-tests (p<0.05). We found that wakeful rest and the 

associated centroid attractor occupied a middle position in the sleep-wake axis with different 

sleep stages naturally organizing according to their conventionally understood depth. Anatomical 20 

regions consistently associated with each sleep stage are illustrated in Figure S12. Methods 

described in Supplementary Section M14. 
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Materials and Methods 

Methods 

M1. Participants 

Twenty participants (nine males, eleven females; mean age 40 years with a standard 

deviation of 12 years) had intracranial surface or depth electrodes implanted for the treatment of 5 

pharmacologically intractable epilepsy (Figure 1A). All participants gave informed consent to 

participate under research protocols approved by the University of Pittsburgh Institutional 

Review Board. Depth electrodes were produced by Ad-Tech Medical and PMT and were 0.86 

and 0.8 mm in diameter, respectively. Grid electrodes were produced by PMT and were 4 mm in 

diameter. Sixteen participants had depth electrodes only, three had grids only, and one had a 10 

combination of both. The main results of this paper, when studied on an individual participant by 

participant basis, did not differ significantly between those with depth electrodes and those with 

grids. 

 

M2. Analysis overview 15 

In summary, we collected (M3) and preprocessed chronic intracranial recordings 

continuously over multiple days, which we divided into five second non-overlapping windows, 

and calculated the functional partial connectome of each window via all-to-all electrode 

coherence (M4). The electrodes were grouped into tightly connected parcels (M5) and the 

timescales (autocorrelation) of the parcels determined (M6). We then grouped parcels and 20 

frequencies into functional network components using Principal Components Analysis (M7) and 

studied how the overall mixture of all functional networks would change over time (M9/10). 

Finally, we learned a dynamical systems model of these networks using a deep recurrent neural 

network to study the attractor and repulsor dynamics governing brain network dynamics and the 

relationship between brain networks and behavior (M11-14).  25 

 

Artifacts were removed at multiple points in the analysis. Specifically, a comb filter was 

applied to remove line noise (M3). An hour before, during, and after all seizures were removed 

to eliminate ictal and peri-ictal activity (M4). Spatial regression was used to remove motion, 

respiratory, and cardiac artifacts (M4). ICA was used to remove large spike artifacts that 30 

sometimes occur due to disturbing the cables or connections (M4). Epileptogenic areas and 

activity that correlated with the activity in these regions was removed to eliminate interictal 

activity or other pathological activity (M4/5/8). 

 

M3. Intracranial EEG data collection 35 

Electrodes were localized via postoperative MRI or CT scans coregistered to the 

preoperative MRI using Brainstorm (41). Surface/grid electrodes were projected to the nearest 

point on the preoperative cortical surface automatically parcellated via Freesurfer to correct for 

brainshift (42). Electrode coordinates were then coregistered via surface-based transformations 

to the fsaverage template using Freesurfer cortical reconstructions. Intracranial 40 

electroencephalography (iEEG) data was collected using the Natus system at 1kHz. Notch filters 

at 60 and 120 Hz were applied with a subsequent bandpass filter from 0.2 to 115Hz. 

 

M4. Data preprocessing and artifact removal 

The spatial autocorrelation between an electrode and all electrodes within 2cm of it was 45 

then measured and regressed out to remove both local and global artifacts, including artifacts due 

to motion and current spread due to volume conduction.  
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Neural activity an hour before and an hour after all seizures, whether electrographic or 

clinical, was removed before calculating coherence. A board-certified neurologist identified the 

seizure network in all but two participants, with those two participants having no recorded 

electrographic or clinical seizures during their stay in the hospital.  5 

 

The data was then separated into five second non-overlapping windows and coherence 

was computed over each window between all pairs of electrodes over five frequency bands: theta 

(4-8Hz), alpha (8-12Hz), low beta (14-20Hz), high beta (20-30Hz), and gamma (30-70Hz). In 

summary, this generated five connectome structures every five seconds. This was performed 10 

using the scipy coherence function under default settings as of version 1.9.3. 

 

Independent component analysis was then applied, and components were visually inspected 

for any artifacts which were then removed. The main criteria for removal were independent 

components that possessed time course activations that were clearly non-neurological (such as 15 

step-functions or near Dirac deltas).  

 

M5. Parcellation 

For each participant, we parcellated their electrodes into groups of tightly coherent 

electrodes. We utilized the Leiden algorithm to identify a single regional atlas that optimized 20 

graph modularity over the entire week-long period across all five frequency bands (43). 

Modularity (Equation 1) was calculated separately over each network from every five-second 

window with the Leiden algorithm optimizing the average modularity across all windows and 

frequencies. This generated on average 10-15 parcels for each participant. 

 25 

 
Equation 1: Modularity metric that the Leiden algorithm optimizes. 𝐴𝑖,𝑗𝑏,𝑡 refers to the weighted 

connectivity (coherence) between electrodes i and j at time window t and frequency band b. 𝑘𝑖𝑏,𝑡  
is the degree of electrode i and mb,t is the sum total of all connections at that time and frequency. 

δ(ci,cj) is an identity function which denotes whether electrodes i and j are in the same parcel. 30 

The Leiden algorithm finds the parcellation assignment of each electrode that optimizes 

modularity over all time windows and frequency bands.  

 

To assess the stability of which electrodes would be grouped into which parcels, we 

separated the data into six-hour non-overlapping segments (between 18-80 segments per 35 

participant) and found the optimal community structure for each segment. We quantified the 

similarity between each segment's parcel definitions using the Rand Index (44) (percentage of 

electrode pairs that were parcellated equivalently under the two parcel definitions) which almost 

universally returned values greater than 0.9 as illustrated in Supplementary Figure S2 indicating 

that the overall parcellation was well-preserved over time. Across participants, this average value 40 

had a mean of 0.96 and a standard deviation of 0.02, indicating parcellations remained highly 

consistent over time. This consistency motivated our decision to use the same parcel structure 

over the entire work for interpretability. 
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To ensure that that any potential pathological activity was removed from our analysis, we 

removed elements of the activity of non-seizure related parcels that appeared to correlate to the 

activity of parcels within the seizure onset zone. More specifically, using linear regression, we 

attempted to predict the coherence within non-seizure related parcels using the coherence of 

seizure-related parcels and then removed this predicted coherence.  5 

 

M6. Autocorrelation stability (Figure 1) 

We tested whether the autocorrelation of each parcel’s coherence would show relatively 
consistent patterns of “fast” or “slow” rhythms throughout the week (Figure 1). We split the 

entire ~week-long time course for each participant into six-hour non-overlapping segments. 10 

After removing parcels associated with the seizure network, we then took the average coherence 

between electrodes within a single parcel for a single frequency band and then calculated its 

autocorrelation up to one hour. We fit this autocorrelation curve to a power law (

) to generate two timescale parameters: AC1 (autocorrelation 

strength) and AC2 (autocorrelation steepness) which described the autocorrelation of a single 15 

parcel at a single frequency at a single time segment. For a given frequency band, we took the 

timescale parameters across all parcels and time segments and grouped the parameters by which 

parcel they were measured in. We used Kruskal-Wallis ANOVA tests to show that in almost all 

participants and frequency bands, there were statistically significant differences between the 

group means, mostly with high effect sizes (η>0.12, Supplementary Figure S3).  20 

 

We tested whether parcels from different anatomical regions tended to have reliable 

differences in their autocorrelation across participants using linear mixed effect models. We 

assigned each parcel to one of the six canonical fMRI networks defined in (14) (“default mode”, 
“dorsal attention”, “salience”, “somatomotor”, “control”, and “visual”) as  based on its largest 25 

overlap. For each parcel, we calculated the autocorrelation of its average intra-parcel coherence 

for a given frequency over the entire week out to one hour and calculated AC1 and AC2 as 

described above. We then averaged both parameters across all frequency bands.  

 

We then chose a single pair of fMRI networks (such as “salience” vs “visual”) and 30 

selected all the parcels across our participants that fell into one of those two anatomical groups. 

We used MATLAB’s fitlme (linear mixed effect model) to model each parcel’s autocorrelation 

parameters with the anatomical group as a fixed-effect and the participant as a random effect, 

allowing us to determine whether one anatomical group had a reliably higher autocorrelation 

parameter than the other across participants. We repeated this for all possible pairs of fMRI 35 

networks and used Bonferroni multiple comparisons correction to identify pairs with significant 

differences (Figure 1B.3). 

 

M7. Robust principal components analysis 

Since many parcels tended to be highly colinear, we used a modified PCA protocol to 40 

reduce dimensionality. We grouped parcels and frequencies that tended to covary together using 

random sample consensus PCA (RANSAC-PCA) on the parcel coherences. By taking the 

average intra-parcel coherence during each time window and frequency, we formed a (number of 

parcels x 5 frequency bands) by (number of time windows) 2D matrix which we then reduced to 

a (number of components) by (number of time windows) matrix using the modified PCA 45 

protocol. This identifies parcels and frequencies that tend to strongly covary together that we 

could easily interpret as a single network component feature that captures cross-frequency 
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relationships while also reducing the dimensionality of the original dataset to simplify further 

analyses.  

 

The modified PCA protocol we used applies random sample consensus to avoid PCA’s 
susceptibility to noisy outliers by taking multiple small subsamples of the data and selecting one 5 

with the fewest number of outliers to train the model (45). We generated 1000 subsamples where 

in each subsample, we selected six 30-minute segments of data from each day. This ensures that 

the PCA is robust to rare outliers and that the PCA produces principal components that are stable 

across days within a participant. Outliers were defined by calculating the Mahalanobis distance 

between each time window’s feature vector and each subsample's distribution. In each 10 

participant, we found that these distances would take on clear bifurcations between relatively 

small distances and short “spikes” of extremely high distances (more than three standard 
deviations) away from the mean that typically lasted for a few minutes. We manually drew a 

cutoff for each participant that was approximately half the average Mahalanobis distance of these 

spikes. For each subsample, we calculated the number of outliers within the subsample, and 15 

calculated PCA over the subsample with the fewest outliers. We utilized enough PCs to capture 

90% of the variance in the dataset, generally resulting in 12-24 networks/PCs per participant.  

 

The network component activation of a principal component was defined as the projection 

of the parcel coherences onto the principal component weights.  20 

 

M8. Seizure network removal 

 When analyzing parcel dynamics (Figure 1), we excluded all parcels with electrodes part 

of the seizure onset zone and early propagation as defined by a board-certified neurologist. For 

network component dynamics (Figure 2 onwards), we first re-added these seizure-related areas 25 

before grouping parcels and frequencies into network components through robust PCA. We then 

removed any network components that were associated with the seizure network before 

analyzing their dynamics. More specifically, we calculated the dot product similarity between the 

absolute value of a principal component vector (normalized to a magnitude of one) and a binary 

vector that marked all electrodes that were part of the seizure network (also normalized to one). 30 

The similarity between these two vectors indicated how anatomically similar the driving factors 

of a principal component and the seizure network were to each other. A null distribution for this 

similarity was formed by randomly permuting the principal component vectors, and all principal 

component vectors that showed statistically significant similarity to the seizure network (p<0.05) 

were removed from all further analyses. 35 

 

M9. Network activation is tied to circadian rhythm and heart rate (Figure 2) 

We tested whether we could identify combinations of networks that were associated with 

neurophysiologically relevant markers. More specifically, we looked at circadian rhythm and 

heart rate. 40 

 

Canonical correlation analysis (CCA) was used to identify a mixture of network 

components that matched a circadian sinusoid with a period of 24 hours. The circadian sinusoid 

was defined as a1*cos(t/24hrs)+ a2*sin(t/24hrs) where a1 and a2 are constants learned via CCA. 

CCA simultaneously tried to find a linear combination/weighting of network component 45 

activations to fit to this sinusoid. 
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The model was trained over the first half of the week and then tested on the second half 

through Pearson correlation (out of sample validation of correlation). The Pearson R of the fit on 

the test dataset was calculated and then compared to a null distribution of R that was formed via 

permutation tests that temporally shifted each day's network component activity forward or 

backwards by a uniform random number ranging from 0-24 hours. This preserves the 5 

autocorrelation of the neural signals while eliminating any consistent circadian-like pattern 

across days.  

 

Heart rate was assessed using collected EKG signals that were processed using heartpy 

(46). The instantaneous heart rate for any window was the average heart rate for a 30-second 10 

period centered on the window. L1-regularized regression was trained on the first half of the 

week to identify a mixture of networks that predicted heart rate using sklearn’s implementation 
(out of sample validation of regression). Hyperparameters were optimized on the training set 

using ten-fold cross-validation. The quality of the fit was assessed on the remaining half of the 

week via Pearson correlation with a null distribution formed using the same permutation tests 15 

used for circadian rhythm to preserve both the autocorrelational properties of the heart rate and 

neural signals. 

 

M10. Neural dynamics undergo chaotic-like transitions that are associated with shifts in 

natural behavior (Figure 3) 20 

We examined how the overall brain state (the status of all recorded networks in the brain) 

would change over time by dividing the week into “transitions”, periods when the brain was 
rapidly reconfiguring itself; and “states”, periods of time where the brain’s functional 

connectome appeared to be relatively stable.  

 25 

In Figure 3A and Supplementary Figure S7, we provide evidence that the brain falls into 

states and transitions by examining the “speed” of the brain. Speed was defined as how much the 

brain’s state changed between one five-second window and the next. More specifically, we took 

the vector of all network activations of each window (the parcel coherences projected into the 

network PCA space) and calculated the Euclidean distance between the network activation 30 

vector of one window and the next (the temporal derivative in the network PCA space).  

 

We calculated the distribution of the time between windows that fell into the top 1% of 

velocity across all participants and compared that distribution to Poisson distributions with 

λ=0.01. The Poisson distribution captures what the expected time between high-speed windows 35 

would be in a memoryless process (non-autocorrelated speed). The results showed that windows 

with high speeds tended to cluster next to each other temporally (supplemental Figure S7). This 

finding supports the notion that brain network dynamics can be separated into times when the 

brain is relatively static (states) punctuated by bursts of time when the brain is quickly changing 

(transitions). Furthermore, we tested this between windows falling within the top 10% of 40 

velocity (λ=0.1) and found the same result. On an individual participant level, we also used 

Kolomogorov-Smirnov tests to assess whether the time between high transition speed windows 

followed a Poisson distribution, rejecting the null hypothesis in all 20 participants (p<0.05).  

 

In Figure 3D-F, we evaluated various properties of these transitory bursts. We identified 45 

neural transition bursts using binary segmentation on the time series of network activation 

vectors (change point detection), implemented via the ruptures package in Python using default 

settings (47). This algorithm starts by identifying the optimal place to position a single change 
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point such that the network activations before the change point possess a maximally different 

distribution from the network activations after it, effectively dividing the week into two pieces. 

Binary segmentation then recursively subdivides the resulting pieces of time according to the 

same procedure, until no such change points can be found. Neural transition trajectories were 

then defined as the time around a change point possessing above average transition speed.  5 

 

In Figure 3B, we calculated the median time between neural and behavioral 

changepoints. Using nine participants with available high-quality video recordings throughout 

the week, we randomly selected two days to annotate for one of three natural behaviors: 

interfacing with a digital screen, socially interacting with another living creature (either human 10 

or in one participant a canine companion), or physically interacting with an object. For this 

analysis, we excluded times when participants were asleep. In practice, if the participant was not 

doing one of these three behaviors, they were awake but not outwardly active (wakeful 

rest/presumably internally thoughtful). Behavioral changepoints were defined as anytime one of 

these three behaviors started or ended, including times when participants switched from one to 15 

another. We calculated the median time between neural and behavioral changepoints and found a 

null distribution for this metric using permutation testing. 

 

Specifically, we temporally shifted the behavioral changepoints forward or backwards by 

a uniform random number ranging from 0-24 hours, recalculating the median time difference 20 

between behavior and neural changepoints, and used 10000 trials of this to form a null 

distribution of the expected time difference between behavioral and neural changepoints if there 

was no temporal relation between the two. We tested whether the real time difference between 

behavior changes and state changes was consistently smaller than the expected time difference 

using a paired t-test across participants.  25 

 

In Figure 3C, we examined the distance between the paths traversed by different 

transition trajectories. We calculated the distance between the start points of all trajectories in a 

participant and the distance between their end points. Two trajectories were considered to have 

similar starting or ending point if the distance between the points fell into the bottom 10% of 30 

trajectory pairs. We grouped trajectories into three groups: 1. trajectories with similar starting 

and ending point, 2. trajectories with similar starting points only, and 3. trajectories with similar 

ending points only. We calculated the average distance between trajectories that fell into each 

group as a function of how much of the trajectory had been completed. Specifically, we used 

linear interpolation to determine what was the brain state 5%, 10%, 15%, 20%, …, 95% of the 35 

way into each trajectory. We calculated the distance between brain states of the same percentage 

in each of the three groups. Figure 3D shows the distribution of these distances for a single 

participant and the effect size of the difference between these distances across all participants. To 

determine the effect size, for each participant, we calculated the Cohen’s d between the distances 
between trajectories that start and end similarly to the distances between trajectories that start 40 

similarly but end differently. This measures the number of standard deviations that separate the 

distributions in the trajectory categories at different points along the trajectory. We then 

calculated the standard error of these Cohen’s d across all 20 subjects.  
 

In Figure 3E, we studied whether these transitions influenced the chaoticity of the brain 45 

dynamics. Chaoticity was defined using the 0-1 chaos test using the protocol described in (48) 

and was calculated over non-overlapping ten minute segments. In summary, we calculated the 

chaoticity of each network component independently over each time segment. The chaoticity of 
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the overall neural dynamics for a given time segment was defined as the median chaoticity of all 

network components. Segments with a transition were compared to segments without one. 

 

 
Equation 2: Chaos 0-1 test protocol. Define φ(n) as the network component activation of interest 5 

at time window n for a given ten-minute segment. This is used to “drive” the dynamical system 
described in Equations 2.1 and 2.2 where c is a randomly chosen “resonance” parameter between 
0 and π that remains constant during a single “iteration” of this process. M(n) is evaluated up to 

an n of approximately N/10 where N is the number of time windows in the ten-minute segment. 

Kc is estimated by fitting a straight line between the numerator and denominator of Equation 2.4 10 

and represents the chaoticity of a single iteration. c is redrawn 1000 times and the median Kc is 

defined as the chaoticity of the network component over the ten-minute segment. 

 

In Figure 3F, we analyzed the distribution of the transition size which we defined as the 

net displacement of a transition and the time-between transitions. We fit power law exponents to 15 

these distributions using MATLAB’s nlinfit function with power laws defined as 
a1*frequency^(-a2) where a1 and a2 are learned. 

 

We tested whether these distributions came from power law distributions using two 

methods from (49). First, we used Kolmogorov-Smirnov (KS) tests to test whether we failed to 20 

reject the null hypothesis that the distributions plausibly came from power laws. We fit power 

law distributions to each participant’s transition size and time between transitions distributions 

separately and calculated the KS distance between the experimental distributions and their 

theoretical power law distributions. We formed a null distribution on these distances by drawing 

10000 random samples from the theoretical power law distribution, fitting a power law 25 

distribution to those samples, and then calculating the KS distance between the sampled 

distribution and the fitted one. If these distances were consistently lower than the distance 

between the real distribution and its estimated power law one, then we reject the null and 

conclude that the distribution did not come from a power law. We found that 17/20 participants 

had transition size distributions that plausibly came from power law distributions (p>0.05), and 30 

20/20 participants had time-between transition distributions that plausibly came from power law 

distributions.   

 

We then used likelihood comparison tests to see whether the transition size and time-

between distributions were more likely to have come from power law, exponential, or log-35 

normal distributions. We calculated the log-likelihood that each participant’s distributions came 
from each of the three categories. We used a Wilcoxon signed-rank test to assess whether the 

log-likelihood of power law distributions were higher than exponential and log-normal 

distributions across participants. Power law distributions were more likely than exponential 
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(p=0.007 for transition size and p=4.8e-5 for time-between) and more likely than log-normal 

(p=0.03 for transition size and p=4.8e-5 for time-between). 

 

M11. Neural dynamics are driven by a central homeostatic-like attractor at the default 

mode. 5 

To determine whether these brain network dynamics possessed consistent anatomical 

trends, we used dynamical systems eigendecomposition.  

 

We used a deep recurrent neural network to learn a high-dimensional representation of the 

network activations where the brain’s dynamics could be captured using linear methods. The full 10 

model is shown in Figure S9. Our model is an adaptation of the method presented in (50) which 

uses deep neural networks to learn a nonlinear transformation between the original observables 

of a system onto their corresponding points on a new manifold where the evolution of the system 

can be captured by linear dynamical laws. 

 15 

 To describe a single forward-pass through the model, we start with xt, the network 

activation vector at time t (the intraparcel coherences projected onto the robust principal 

components) for a single participant. This vector was first fed into an encoder, a long short-term 

memory (LSTM) unit implemented in tensorflow using default settings.  

  20 

 The output of the LSTM was the Koopman representation kt, a set of variables that 

summarized the current dynamical state of the brain up to time t. kt was chosen to have a 

dimensionality ten times as large as xt to allow it to serve as a nonlinear kernel. kt was then 

passed to two models during training. The first was a linear autoregression model with learnable 

parameters A, b that attempted to predict the next time step’s Koopman state as 𝑘̂𝑡+1 = 𝐴𝑘𝑡 + 𝑏. 25 

The autoregressive error of this is the squared loss between the predicted and actual Koopman 

state. In other words, how well does the information encoded in kt predict its own temporal 

evolution using linear methods?  

 

We trained all models (f, d, A,b) simultaneously according to two loss functions. One of 30 

these loss functions asked whether the predicted Koopman state representation at time t+1 was 

close to the actual Koopman state representation at that time. A single training step is described 

in Figure S10. 

 

We implemented these models using Python's tensorflow Adam optimizer under default 35 

settings. All networks used activation functions and L-1 regularization.  

 

M12. Behavioral classification (Figure 4B) 

To test whether the Koopman state representation captured neurocognitively interesting 

information and whether behavior organized consistently along it, we used it to predict the 40 

participant’s behavior. Participant behavior was manually annotated for three activities: watching 

a digital screen, socializing with someone else, or physically manipulating an object. These three 

behaviors were not mutually exclusive. We trained L1-regularized logistic classifiers using 

Python’s sklearn toolbox to predict behavior by training on one day and testing on another 

(binary classifiers, were they performing the behavior or not). Hyper parameterization was 45 

optimized on the training set using ten-fold cross-validation. The area-under-curve of the 
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receiver-operator-characteristic of each network's ability to classify the desired behavior was 

calculated. 

 

To determine what brain networks were consistently associated with each behavioral 

state across participants, for each participant, we selected time windows where the participant 5 

was doing a behavior of interest. Using the decoding model, we asked what brain networks were 

associated with the Koopman state representation of those time windows, forming a (networks x 

1) vector for each time window. We averaged these vectors across all time windows associated 

with the behavior and projected them onto the six canonical fMRI networks. Using the temporal 

perturbation testing described in our behavioral changepoint testing (temporally shifting the data 10 

forwards or backwards by random amounts relative to the behavioral labels), we formed a null 

distribution for the activation of these six canonical fMRI networks. We then calculated the 

Cohen’s d effect size of the actual average network activation during a task compared to the null 
distribution with positive effect sizes indicating higher-than-random network activation. Across 

all participants, we then used one-sample t-tests to see if there was a consistent trend in these 15 

effect sizes across participants and used Benjamini-Hochberg for multiple comparisons 

correction (with the number of tests being 18 for three behavioral tasks over six networks).  

 

M13. Attractor state analysis (Figure 4C) 

We calculated the eigendecomposition of the Koopman operator (A from Figure S9). In all 20 

subjects, A was full rank and non-ill conditioned, leading to one found critical point (also known 

as a fixed or equilibrium point): inv(I-A)*b where I is the identity matrix. We found that in all 

twenty participants, the real component of all eigenvalues had magnitude greater than zero and 

less than one, indicating this critical point was an attractor (brain states near the attractor tend to 

be pulled towards it) as shown in Supplementary Figure S11. While dynamical systems may 25 

have multiple critical points, this single attractor found by the Koopman operator is 

conventionally thought to represent the “global” behavior of the system (e.g. a system with both 
an attractor and repeller will show eigenfunctions associated with the attractor if the system 

gravitates towards the attractor as time approaches infinity (14)). One caveat is that interpreting 

systems with more than one critical point using Koopman operators is an active area of 30 

investigation (15).  

 

We used the decoding model to ask what original network activation was associated with 

this attractor state. We projected the resulting network activations onto the six canonical fMRI 

networks as defined in (16) and averaged over frequency, giving us a six-by-one vector for each 35 

participant. We then subtracted each participant’s fMRI network activation vector by its mean to 

ask “which networks were activated or deactivated” relative to the rest of the brain. We used t-
tests on each network activation across participants to see if any networks were consistently 

activated or deactivated. We used Bonferroni for multiple comparisons correction. Participants 

that did not have electrodes in all six canonical networks were removed from this analysis. 40 

 

We repeated this process except by averaging over networks to ask if any frequencies were 

activated or inactivated. 

 

M14. Neurocognitive states form an hourglass-like shape where the default mode attractor 45 

separates waking and sleep (Figure 5) 
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For visualization purposes, in Figure 5A-left, we chose two participants where we could 

accurately predict all three behaviors and plotted their behavioral trajectories in Koopman space. 

First, we calculated a subspace where all three behaviors are separated based on the linear 

classifiers determined in the previous section. The first axis (Koopman subspace 1) was the 

found feature vector associated with digital screen usage. The second axis was the part of the 5 

socialization-associated feature vector that was orthogonal to the first axis. The third axis was the 

part of the physical manipulation-associated feature vector that was orthogonal to both the first 

and second axes. We then projected the Koopman state representation from the second (testing) 

annotated day onto these three axes and plotted trajectories when the participants were partaking 

in each behavior along with times where the participant was not doing any of the behaviors. 10 

 

 To test whether outwardly active behavior departed from the attractor state relative to 

wakeful rest (Figure 5A-right), for the nine participants with video annotations, we calculated the 

distance between each window’s Koopman state representation and that participant’s attractor 
state. We then averaged windows based on whether the participant was doing one of the three 15 

behaviors or awake but not doing any of the marked behaviors (which in practice meant sitting 

idly without obvious outward interactions). We used paired t-tests to ask whether the average 

active behavior to attractor distance was larger than the wakeful rest to attractor distance. 

 

 In Figure 5B, we assess the organization of neurocognitive states around this attractor. 20 

Specifically, we measure where neurocognitive states tended to form across participants along 

the axis between sleeping and actively waking states. For each participant, we calculated the 

mean Koopman state of all windows associated with active waking behavior and did the same 

separately for sleep. We then defined the vector between these two points as the participant’s 
“sleep-wake axis” and projected the Koopman states from all windows during the annotated days 25 

of data onto this axis. Using a sleep score classifier (28), we classified windows associated with 

sleeping behavior into N1, N2, N3, and REM sleep. We then divided windows into the following 

groups: actively outward waking behavior, waking rest, N1, N2, N3, and REM. We calculated 

the mean of each group’s projection along with the attractor state’s projection onto this “sleep-

wake” axis. To normalize the range of these projections between participants, we rescaled and 30 

recentered these projections linearly such that the center of all sleeping states was at zero and the 

center of active waking states was at one. We plotted the distribution of these state center 

projections in Figure 5B, and using paired t-tests with Bonferroni corrections, we assessed 

whether different states had reliably different locations along the sleep-wake axis across 

participants. We assessed whether different sleep stages activated different fMRI networks 35 

consistently across participants using the same method used to assess for consistent behavioral 

activation. 

 

Supplementary Figures 

 40 
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Figure S1: The location of each participant's electrodes in MNI coordinate space. Electrodes with 

the same color come from the same participant. 

 

 5 
Figure S2: Parcellation stayed steady over time. We divided each participant’s data into non-

overlapping six-hour blocks and computed the optimal parcellation for each block. The Rand 

Index, which represents the proportional overlap between two parcellations of electrodes, is 

shown between all six-hour blocks for each participant. For each participant, we additionally 

calculated the average Rand index between all pairs of six-hour blocks. Across participants, this 10 

average value had a mean of 0.96 and standard deviation of 0.02, indicating parcellations 

remained highly consistent over time.  
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Figure S3: We assessed whether parcels had consistently different timescales using 

nonparametric ANOVA tests. For each participant individually, we divided their weeklong time-

course into six-hour non-overlapping blocks. We calculated the autocorrelation of each parcel’s 
coherence at a given frequency band (θ: theta, α: alpha, βl: low beta, βu: high beta, γ: gamma) 5 

across all blocks. We then tested whether the parcels from a single participant and frequency 

band had different autocorrelations from each other over these blocks using a Kruskal-Wallis 

one-way ANOVA test. Each group in the ANOVA test was the autocorrelations of a single 

parcel across all blocks, and we tested for whether there were differences in the group means. 

The effect size of the ANOVA test is shown above with asterisks marking statistically significant 10 

differences (p<0.05). η2 effect size indicates the percentage of variance in autocorrelation that is 
explained by which region autocorrelation was measured in. 
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Figure S4: To ensure we remove all network components related to the participant’s seizure 
related areas, we calculated the similarity between each participant’s network component and 
their seizure zones and removed any network components showing above-chance similarity. 

Seizure zones were defined as any electrodes marked as part of the seizure onset zone or early 5 

propagation. Similarity was defined as the dot product between the absolute value of each 

participant's network component and their seizure zone and is shown above for all 20 

participants. Participants 17 and 18 did not have any clinically defined seizure network. A null 

distribution for the dot product similarity generated by randomly permuting each network is 

shown with the red line to denote statistical significance threshold (p=0.05). All network 10 

components with significant similarity to seizure related regions were removed for all analyses 

on network components (Figure 2 and onwards). 
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Figure S5: This figure shows the results in Figure 2A for all participants. The anatomical and 

frequency coverage of the mixture of networks associated with circadian rhythm in each 

participant are shown above. The correlation between a theoretical circadian sinusoid and the 

mixture’s activation is shown above each plot (R). Asterisks indicate statistically significant 5 

correlations. 

 

 
Figure S6: This figure shows the results in Figure 2B for all participants with recorded EKG. The 

anatomical and frequency coverage of the mixture of networks associated with heart rate (which 10 

is used as a proxy for arousal) in each participant are shown above. The correlation between the 
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heart rate and the mixture’s activation is shown above each plot (R). Asterisks indicate 
statistically significant correlations. 

 

 
Figure S7. Top) The average time between windows with the top 1% or 10% of transition speed 5 

across all participants is shown in blue vs the expected time if windows of high speed occurred 

via homogenous Poisson process (λ =0.01,0.1). Error bars show 95% confidence intervals across 
participants. We found an increased occurrence of temporally adjacent or near-adjacent time 

windows of high transition speed, indicating that times of high speed occurred in “bursts” rather 
than in the distributed manner a Poisson process would indicate. We also found an increased 10 

occurrence in periods of time lasting for several minutes or longer with no times of high speed 

compared to what would be expected with a random Poisson process, indicating the existence of 

“stable states” of decreased speed. Bottom) The average time between windows of high speed 
for each individual participant. The distribution of each participant’s time between windows did 
not follow a Poisson distribution by Kolmogorov-Smirnov test (p<0.05 in all cases). 15 
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Figure S8: This figure shows the results in Figure 3D for all twenty participants. Average 

distance between pairs of transition trajectories as a function of what proportion of the trajectory 

was complete. Trajectory pairs are grouped into three categories: transitions with similar starting 

and ending points (1, blue) vs similar starting but different ending points (2, red) vs different 5 

starting but similar ending points (3, yellow). 

 

 
Figure S9: The Koopman model described in Figure 4A. xt represents the network activations at 

time t. kt is the output of the encoding model as is the Koopman state representation at time t. 10 
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Here the encoding model is a recurrent neural network, the decoding model is a standard neural 

network, and the Koopman operator (A,b) is a first-order discrete differential equation. 

 

 
Figure S10: A single training step of the overall algorithm described in Figure S9. 5 

 

 
Figure S11: Eigenvalues of the Koopman operator (eigenvalues of the matrix A in Figure S10) 

over all twenty participants. In all participants, the real part of all eigenvalues is less than one, 

indicating that the overall dynamics were governed by stable attractors.  10 
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Figure S12: Anatomical regions consistently activated during different stages of sleep across 

participants. Negative t-statistics indicate that brain networks spanning the indicated fMRI 

network regions have lower coherence during the relevant sleep stage compared to other time 

windows throughout the week. Asterisks mark statistically significant networks post multiple 5 

comparisons.  

 

 
Figure S13: We tested whether brain transitory bursts went directly from one state to another or 

whether they took indirect, circuitous routes. We plotted the average total distance (sum of 10 

transition speed) traveled during transitions and stable states for all twenty participants versus 

their net displacement (distance between start and end states). Net distances during transitions 

were 8.87±1.19 times larger than the net displacement (confidence interval indicates 95% bounds 

on the average multiplier across all participants). Net distance versus displacement during states 

were 5.99±2.47 with the ratio between distance and displacement were higher for 15 

transitions than states (p=0.01, paired t-test). 


